Lecture 29

* Prayer
* Spiritual thought
* Spherical cords

$$
\begin{cases}x=\rho \sin \phi \cos \theta & 0 \leq \theta \leq z_{\pi}, \\ y=\rho \sin \phi \sin \theta & 0 \leqslant \phi \leq \sqrt{\sigma}, \\ z=\rho \cos \phi & \end{cases}
$$

Question: Low to get ρ, ϕ, θ from x, y, z ?

$$
\left.\begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{0^{2}+1^{2}+\sqrt{3}^{2}}=2 \\
\cos \phi=\frac{z}{\rho}=\frac{\sqrt{3}}{2} \leadsto \phi=\frac{\pi}{6} \\
\cos \theta=\frac{x}{\rho \sin \phi}=0 \\
\sin \theta=\frac{y}{\rho \sin \phi}=\frac{1}{2 \times \frac{1}{2}}=1
\end{array}\right\} \theta=\frac{\pi}{2}
$$

Therefore, $(\rho, t, \phi)=\left(2, \frac{\pi}{2}, \frac{\pi}{6}\right)$.

To use spherical coordination to compute integrals, we heed to know the Jacobian:

$$
\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}=\rho^{2} \sin \phi
$$

Ex

$$
\left.\begin{array}{rl}
v o l & =\iiint_{E} 1 d V \\
\left(x_{1}, z\right) & \rightarrow(\rho, z, \phi) \\
1 \leq \rho \leq 2, \\
0 \leq \theta \leq 2_{\pi}, \\
0 \leq \phi \leq \frac{\pi}{2}
\end{array}\right\} E^{\prime}
$$

$$
\iiint_{E} 1 d V=\iiint_{E^{\prime}} 1 \rho^{2} \sin \phi d V^{\prime}=\iint_{0}^{\pi / n} \iint_{0}^{2} \rho^{2} \sin \phi d \rho=\cdots=\frac{14 \pi}{3}
$$

In Chapter 16 , we will make sense of Integration by Parts for multivariable functions.

Vector frelds: draw
a map of arrows
An example of rector freed is the gradient rector field.

Ex: $\quad F(x, y)=\langle 2 x, x-y\rangle$

x	y	$F(x, y)$
0	1	$\langle 0,-1\rangle$
1	0	$\langle 2,1\rangle$
1	-1	$\langle 2,2\rangle$
-1	1	$\langle-2,-2\rangle$
2	0	$\langle 4,2\rangle$

On Mithematica:

$$
\begin{aligned}
& \text { Vectorellot }[\{2 x, x-y\},\{x,-1,1\},\{y,-1,1\}] \\
& \text { Vectorllot } 3 D[\{-y, x, x z\},\{x,-5,5\},\{y,-55\},\{z,-5,5\}]
\end{aligned}
$$

